碘值500-1500四氯化碳35-70比表面積500-1500亞蘭10-30水分3灰分3
微孔活性炭的原料來源較為廣泛,常見的有以下幾種:
1. 木材:如木屑、木炭等。
2. 煤炭:包括無煙煤、煙煤等。
3. 果殼:例如椰子殼、核桃殼、杏殼等。
4. 生物質:像農作物秸稈(如麥秸、玉米秸)、甘蔗渣等。
這些原料經過一系列的加工處理,如炭化、活化等工藝,終制成具有豐富微孔結構的活性炭。

微孔活性炭具有廣闊的前景,主要體現在以下幾個方面:
1. 環境保護:在廢氣處理、廢水凈化等方面發揮重要作用。它能夠吸附有機污染物、重金屬離子等,有助于改善環境質量。
2. 能源存儲:作為超級電容器和電池的電極材料,具有高比表面積和良好的導電性,可提高能源存儲設備的性能。
3. 氣體分離與儲存:例如用于氫氣、甲烷等氣體的分離和儲存,對于清潔能源的應用具有重要意義。
4. 催化領域:作為催化劑載體,能夠提高催化劑的分散性和穩定性,促進化學反應的進行。
5. 醫療領域:可用于藥物吸附和控釋,以及血液凈化等醫療用途。
6. 食品和飲料工業:用于脫色、除臭和提純等過程,提高產品質量。
7. 電子工業:在電子元件的制造和封裝中,用于去除雜質和濕氣。
隨著技術的不斷進步和對材料需求的增加,微孔活性炭在上述領域的應用有望進一步拓展和深化。

臨朐縣海源活性炭廠,是一家從事活性炭生產20年的生產廠家,產品20多個型號,覆蓋不同領域的活性炭使用環境,產品營銷全國,質量穩定如一,初心不改,一切為環保事業做出應有的貢獻,始終將青山綠水作為自己產品質量的要求。 地址:山東臨朐縣冶源鎮西圈村。
微孔活性炭制造與應用技術 ,電導率高、力學性能好,但透氣率低。 微孔活性炭 對炭化溫度、活化溫度、由它組裝的EDLC具有良好的充放電性能和循環性能。但是內阻過高,大電流下充放電時電容量下降過大。其特點:具有容量大、體積小、充放電簡單快速、使用溫度范圍寬、電壓保持性好、充放電次數不受限制等。 碳納米管是由石墨的碳原子層卷曲而成,是由單層或多層石墨卷成的無縫管狀殼層結構,具有很大的比表面積,管徑在0.4~100nm范圍內。碳納米管用于EDLC電極材料具有比活性炭高很多的比表面利用率。有報道顯示基于碳納米管薄膜電極的比表面積為430m/g時比容達到45F/g,理論上在清潔石墨表面的雙電容量為20μF/cm2,以此推算碳納米管電極的電容量達到理論 EDLC的57%,而活性炭電極2nm以下的孔對EDLC基本上沒有貢獻,從而限制了其電容量,所以對碳納米管來說,由于孔隙形成,其孔徑在2~5nm之間。 廢氣處理活性炭也是雙電層電容器(EDLC)使用多的電材料、早在1954年就有了以感世安貓于EDLC電級獲得的專件) 一般認為、柱形多孔活性炭的比表面積越大、其比容就越高、通常認為用大比表面積的電級材料來獲得高比容量,因為EDLC主要靠電解液進入活性炭的孔隙形成雙電裝存儲電荷、一般認為水溶液中鍛材料中2nm的孔對形成雙電層比膠利、如小干2mm 以下的孔則很少有雙電層形成:對非水電解液則該孔徑為Smm、因為孔經過小時電解質溶液很難進入并浸澗這些微孔。因此這些微孔所時應的裝面積就成為無效表面積、所以需要對活性炭的孔徑和比表面選擇一個佳范圍值,用以提高中孔的含量,充分利用有效表面積、從而增大電極 自20世紀70 年代以來,人們為了獲得高比容量的AC電極材料進行了大量的工作,目前用氫氧化鉀溶液活化的AC電極比容量高可達 400F/g)。 ①碳納米纖維儲氫,碳納米纖維具有非常高的儲氫密度,白期等用流動強化法制備的碳納米纖維(直徑約100mm)在室溫下的儲氫密度為10%(質量分數). ③碳納米管儲氫,由于納米材料研究熱潮的帶動,以納米碳材料進行儲氫成為研究的熱點。碳質儲氫材料主要有碳納米纖維和碳納米管等幾種,均具有優良的儲氫性能,國內外對碳納米管儲氫做了大量的研究,成會明學要得在10MPa下單壁碳納米管的儲氫密度為4.2%(質量分數) 等)報道在一293℃、12MPa下碳納米管的儲氫密度為8%(質量分數),P.Chen等[)報道在380℃、常壓下碳納米管的儲氫密度達20.0%(質量分數)。 ④ 納米石墨儲氫。納米石墨儲氫近年來也取得了較大的進展,S.Orimo等[1]在1MPa氫氣氣氛中用機械球磨法制備的納米石墨粉,儲氫密度施球磨時間的延長而增加,當球磨80b后,氫濃度可達7.4%(質量分數),熱分析(TDS)出現了2個峰,解吸溫度在377~677℃。等用炸藥爆法制備了納米石墨粉,其結構為六方結構,納米晶平均粒度為1.86~2.61mm,比表面積為500~650m/g,在12MPa壓力條件下,儲氫密度僅為0.33%~ 0.37%(質量分數)。 (2)碳材料儲氫機理的研究 ①碳納米管儲氫機理。碳納米管儲氫機理研究主要包括氫氣在碳納米管內的吸附性質、氫在碳納米管中的存在狀態、表面勢和碳納米管直徑對儲氫密度的影響。氫氣在常溫下的吸附溫度和壓強都遠氫氣的臨界溫度和臨界壓力(T,-240℃,P,=1.28kPa),是一種超臨界狀態的吸附,根據吸附務理論。在納米孔中由于分子力場的相互疊加形成寬而深的勞阱,即使壓力非常低,吸附質氫氣分子也很容易進入勢阱中,并以分子簇的形式存在。