關鍵詞 |
寬城太陽能并網發電,鐵嶺太陽能并網發電,銀州區太陽能并網發電,太陽能并網發電廠家 |
面向地區 |
全國 |
目前世界上現有的有前途的太陽能熱發電系統大致可分為:槽形拋物面聚焦系統、中央接受器或太陽塔聚焦系統和盤形拋物面聚焦系統。在技術上和經濟上可行的三種形式是:30~ 80MW聚焦拋物面槽式太陽能熱發電技術(簡稱拋物面槽式);30~ 200MW點聚焦中央接收式太陽能熱發電技術(簡稱中央接收式);7.5~ 25kW的點聚焦拋物面盤式太陽能熱發電技術(簡稱拋物面盤式)。
聚焦式太陽能熱發電系統的傳熱工質主要是水、水蒸汽和熔鹽等,這些傳熱工質在接收器內可以加熱到攝氏450度然后用于發電。此外,該發電方式的儲熱系統可以將熱能暫時儲存數小時,以備用電高峰時之需。
控制器的主要功能是使太陽能發電系統始終處于發電的大功率點附近,以獲得率。而充電控制通常采用脈沖寬度調制技術即PWM控制方式,使整個系統始終運行于大功率點Pm附近區域。放電控制主要是指當電池缺電、系統故障,如電池開路或接反時切斷開關。目 前日立公司研制出了既能跟蹤調控點Pm,又能跟蹤太陽移動參數的"向日葵"式控制器,將固定電池組件的效率提高了50%左右。
在太陽能發電系統中,系統的總效率ηese由電池組件的PV轉換率、控制器效率、蓄電池效率、逆變器效率及負載的效率等組成。但相對于太陽能電池技術來講,要比控制器、逆變器及照明負載等其它單元的技術及生產水平要成熟得多,而且系統的轉換率只有17%左右。因此提高電池組件的轉換率,降低單位功率造價是太陽能發電產業化的和難點。太陽能電池問世以來,晶體硅作為主角材料保持著統治地位。對硅電池轉換率的研究,主要圍繞著加大吸能面,如雙面電池,減小反射;運用吸雜技術減小半導體材料的復合;電池超薄型化;改進理論,建立新模型;聚光電池等。
系統相互立,可自行控制,避免發生大規模停電事故,安全性高;
彌補大電網穩定性的不足,在意外發生時繼續供電,成為集中供電不可或缺的重要補充;
可對區域電力的質量和性能進行實時監控,非常適合向農村、牧區、山區,發展中的中、小城市或商業區的居民供電,大大減小環保壓力;
輸配電損耗低,甚至沒有,無需建配電站,降低或避免附加的輸配電成本;土建和安裝成本低;
調峰性能好,操作簡單;由于參與運行的系統少,啟停快速,便于實現全自動。
立運行的太陽能逆變器用于立太陽能電池發電系統,為立負載供電。并網逆變器用于并聯運行的太陽能電池發電系統。太陽能電池在陽光下產生直流電,但直流供電的系統有很大的局限性。例如熒光燈、電視機、冰箱、電風扇等不能直接用直流電源供電,和大多數電機一樣。另外,當供電系統需要升壓或降壓時,交流系統只需要增加一個變壓器,而直流系統的升壓和降壓技術要復雜得多。因此,除了直接使用直流電的通信、氣象等特殊用戶外,還需要在太陽能發電系統中安裝太陽能逆變器以供生產和使用。